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Recent work in computer science has shown the power of deep learn-
ing driven by the backpropagation algorithm in networks of artificial
neurons. But real neurons in the brain are different from most of these
artificial ones in at least three crucial ways: they emit spikes rather than
graded outputs, their inputs and outputs are related dynamically rather
than by piecewise-smooth functions, and they have no known way to
coordinate arrays of synapses in separate forward and feedback path-
ways so that they change simultaneously and identically, as they do in
backpropagation. Given these differences, it is unlikely that current deep
learning algorithms can operate in the brain, but we that show these prob-
lems can be solved by two simple devices: learning rules can approximate
dynamic input-output relations with piecewise-smooth functions, and a
variation on the feedback alignment algorithm can train deep networks
without having to coordinate forward and feedback synapses. Our results
also show that deep spiking networks learn much better if each neuron
computes an intracellular teaching signal that reflects that cell’s nonlin-
earity. With this mechanism, networks of spiking neurons show useful
learning in synapses at least nine layers upstream from the output cells
and perform well compared to other spiking networks in the literature
on the MNIST digit recognition task.
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1 Introduction

Recent results in computer science have revealed the power of deep learning
(Bengio, 2009; Farabet, Couprie, Najman, & LeCun, 2013; Hinton, Osindero,
& Teh, 2006; Hinton & Salakhutdinov, 2006; Krizhevsky, Sutskever, & Hin-
ton, 2012; Schmidhuber, 2015). But it is unclear which insights from this
work apply to the brain because current algorithms for deep learning are
designed for networks of very simple neurons. Real neurons are different in
at least three crucial respects. First, real neurons communicate by streams
of voltage spikes, or action potentials, whereas neurons in most artificial
deep networks have continuous, graded outputs. Second, real neurons are
dynamic in the sense that their activity at any moment depends not only on
their inputs and synaptic weights at that moment but also on their inputs
and weights over the last few milliseconds (Eliasmith & Anderson, 2002).
And third, real neurons almost certainly lack weight transport, meaning
they cannot send each other detailed information about the weights (i.e.,
strengths) of all their synapses in the way that is required in current algo-
rithms for deep learning (Chinta & Tweed, 2012; Crick, 1989; Grossberg,
1987; Kolen & Pollack, 1994; Levine, 2000; Rolls & Deco, 2002; Stork, 1989).

Of course, these three aspects of real neurons are not necessarily flaws
or shortcomings, as spiking and dynamics may bring computational ad-
vantages (Hinton, 2016; Maass & Markram, 2004; Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014). And of course real neurons
differ from artificial ones in other ways besides these three. But these three
properties do suggest that the computations underlying biological learning
must differ from those of current deep learning algorithms in computer
science. And the same three issues are also relevant to networks embodied
in very large-scale integrated (VLSI) circuits (Azghadi, Iannella, Al-Sarawi,
Indiveri, & Abbott, 2014) and field-programmable gate arrays (FPGA) (Neil
& Liu, 2014). We describe the computational problems raised by these three
issues and then show how those problems can be solved.

To begin with spiking and dynamics, the key issue is that in real neu-
rons, spiking depends on current and past inputs and synaptic weights,
whereas in the artificial neurons of most nonrecurrent deep networks, out-
put depends only on existing inputs and parameters (weights and biases).
In the best-performing algorithms for deep learning, each neuron receives
a drive v, which depends on its inputs and parameters. The neuron emits a
signal a, which is a function of v—a = f (v) where f is called the activation
function. This function matters because deep learning algorithms rely on
the backpropagation algorithm, which works by computing the derivative
of the network’s current output error with respect to the weights of all
the synapses in the net, and these derivatives depend on the derivative of a
with respect to v, da/dv (Ciresan, Meier, Gambardella, & Schmidhuber, 2010;
Hinton et al., 2006; Krizhevsky et al., 2012; Sermanet et al., 2013; Srivastava
et al., 2014).
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But in a dynamic neuron, there is no function relating the present a
to the present v, and so there is no derivative da/dv. Of course, a real
neuron’s outputs are still related to its inputs, but not by a function in the
mathematical sense, which implies that any one input v is always paired
with the same output a. One could tackle this problem by working from
the fact that the current a is a function of current and past vs. But that
approach increases the dimensionality of the problem. In this letter, we
apply a simpler method, which uses, in place of the activation function, the
function relating the expected value of a to v (O’Connor, Neil, Liu, Delbruck,
& Pfeiffer, 2013).

The third difference we are considering—the brain’s lack of weight
transport—sets up further barriers to the backpropagation algorithm. Back-
propagation works by sending error derivatives along a feedback path that
drives learning in the forward part of the network. But those derivatives
depend on the weights of the synapses in the forward path, which means
that the feedback circuits that drive learning must have information about
those weights. In the brain, there is no known way for them to get that
information.

Specifically, backpropagation continually adjusts the synaptic weights in
the feedback path so that each one stays equal to its corresponding weight
in the forward path, with the result that the matrix of feedback weights in
each layer equals the transpose of the matrix of forward weights in that
layer (in convolutional networks, there is more complicated coordination
of weights). In a computer, it is easy to set each feedback weight equal
to the appropriate forward-path weight at each time step. But the brain,
lacking weight transport, has no mechanism to coordinate large numbers
of evolving synapses on different neural pathways in this way (Chinta &
Tweed, 2012; Crick, 1989; Grossberg, 1987; Kolen & Pollack, 1994; Levine,
2000; Rolls & Deco, 2002; Stork, 1989).

Surprisingly, though, it has recently been found that layered networks
can learn even if synapses in the feedback path are not coordinated at all
with those in the forward path but are instead frozen at random values.
This algorithm is called feedback alignment, because in it, the forward-path
synapses evolve to resemble the fixed synapses in the feedback circuits, so
that in the end, it is as if those feedback synapses had been set equal to the
forward ones as required by backpropagation. The reasons that feedback
alignment works are not fully understood, but what is known is described
in Lillicrap, Cownden, Tweed, and Akerman (2014) and Hinton (2016).

Here we show that a variant of feedback alignment can drive deep learn-
ing in dynamic, spiking networks. Connections between our results and
other recent discoveries in the field of spiking networks (Beyeler, Dutt, &
Krichmar, 2013; Bohte, Kok, & La Poutre, 2002; Brader, Senn, & Fusi, 2007;
Diehl & Cook, 2015; Diehl et al., 2015; Eliasmith et al., 2012; Henderson, Gib-
son, & Wiles, 2015; Jimenez Rezende & Gerstner, 2014; Maass & Markram,
2004; Neftci, Das, Pedroni, Kreutz-Delgado, & Cauwenberghs, 2014; Neil &
Liu, 2014; O’Connor et al., 2013) are laid out in section 4.
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2 Methods

2.1 Neurons. We use a mathematical model called the leaky-integrate-
and-fire (LIF), neuron (Eliasmith & Anderson, 2002), which is popular be-
cause it strikes a useful balance between realism and complexity.

At any moment, an LIF neuron has a drive v, which depends on its bias
current, b; its inputs a(in) j (where the index j runs from 1 to the number
of inputs); and its synaptic weights, Wj (Eliasmith & Anderson, 2002). If
the neuron gets its inputs from other spiking cells, then the a(in) j are all 0s
and 1s, where 1 means a spike and 0 means the absence of a spike. If the
neuron gets inputs from sensory receptors or nonspiking neurons, then the
a(in) j may be other real numbers besides 0s and 1s. In either case, drive is
determined by the equation

v = � jWja(in) j + b. (2.1)

An LIF neuron also has an axon hillock potential, h, which determines
when the cell fires. This h depends on v: it is driven upward by positive v

and downward by negative v, and it also has an intrinsic tendency to drain
away toward the cell’s resting potential, which for convenience we call 0.
In other words h is updated by passing v through a leaky integrator,

�h = (v − h)�t/τ, (2.2)

where �t is the time step used in the numerical integration and τ is the
integrator’s time constant; in our simulations, �t = 0.25 ms and τ = 2 ms
(Eliasmith & Anderson, 2002).

The neuron fires an action potential whenever h reaches a threshold value
hth, equal to 0.4, on a scale where the peak potential during a spike has the
value 1; in neurophysiology, membrane potentials are usually expressed in
mV and average about −70 for resting, −30 for the threshold, and +30 for
a spike, but the 0-to1 scale, in units of decivolts, is convenient and does not
change anything essential (Eliasmith & Anderson, 2002). So we have

h > hth → a = 1. (2.3)

That is, the cell’s output snaps to 1, meaning that the cell is spiking, when
its hillock potential crosses the threshold. It stays at 1 for 1 ms and then
falls back to 0 when the spike is over. During that 1 ms, the hillock potential
h does not obey equation 2.2 but stays pinned at 0; that is, the neuron is
refractory during the 1 ms of the action potential. Figure 1 illustrates the
relations between v, h, and the spike output a.

2.2 Backpropagation and Feedback Alignment. In the backpropaga-
tion learning algorithm, synaptic weights evolve according to the formula
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Figure 1: Relations between drive and activity in a dynamic spiking neuron.
(A) Drive v holds at 0.3 decivolts (dV), steps up to 0.6, and then steps to 1.2.
(B) When v is small, the hillock potential h rises to an equilibrium below the
spiking threshold hth (dashed black line) and the cell never spikes. When v is
larger, h rises faster toward a higher equilibrium, and so hits the threshold,
causing (C) spikes.

�W(n)i j = −η(n)δ(n)ia(n−1) j. (2.4)

That is, the change in the weight W(n)i j connecting cell j in layer n − 1 to cell
i in layer n depends on three factors: a positive number called the learning
rate constant η(n), the activity a(n−1) j of cell j in layer n − 1, and a feedback
signal δ(n)i.

The feedback signal is

δ(n)i = �kW(n+1)kiδ(n+1)k da(n)i/dv(n)i. (2.5)

Here v(n)i is the drive to neuron i of layer n, which depends on that cell’s
inputs and incoming synaptic weights; a(n)i is the activity of that cell, which
in most backpropagation nets is a function of its drive, v(n)i; da(n)i/dv(n)i is
the derivative of that function; δ(n+1)k is the feedback signal to cell k in layer
n + 1; and W(n+1)ki is the synaptic weight from cell i in layer n to cell k in
layer n + 1 in the forward path of the network.

The key point is that in backpropagation, all the variables of the form
W(n+1)ki play a double role: they represent the synaptic weights in the for-
ward path, but they also appear in equation 2.5, where they multiply signals
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δ(n+1)k in the feedback path. In other words, each W(n+1)ki acts as a synapse
in two different neural pathways. In the brain the forward and feedback
synapses are of course physically distinct, which means that for backpropa-
gation to run in the brain, each synapse in the feedback path would have to
always stay equal to its specific corresponding synapse in the forward path,
even though the latter synapse is constantly evolving as the network learns.
This is the weight transport problem, which is one of the main reasons back-
propagation is not considered feasible in the brain (Chinta & Tweed, 2012;
Crick, 1989; Grossberg, 1987; Kolen & Pollack, 1994; Levine, 2000; Rolls &
Deco, 2002; Stork, 1989).

This problem is solved in the feedback alignment algorithm by adopt-
ing equation 2.4 from backpropagation but altering its feedback formula,
equation 2.5, to give

�W(n)i j = −η(n)δ(n)ia(n−1) j, δ(n)i = �kB(n)ikδ(n+1)k da(n)i/dv(n)i, (2.6)

where B(n)ik is the synapse from the feedback cell carrying teaching signal
δ(n+1)k to the feedback cell carrying teaching signal δ(n)i (Lillicrap et al., 2014).
Crucially, these B(n)ik are all fixed, random weights. In contrast with back-
propagation, there is no need to keep feedback synapses equal to forward-
path synapses, and therefore no weight transport problem. So feedback
alignment removes this barrier to backpropagation in the brain (Crick, 1989;
Grossberg, 1987; Stork, 1989).

2.3 Broadcast Alignment. Equation 2.6, like equation 2.5, requires that
feedback neurons multiply signals together: the neuron whose output is δ(n)i
must compute the product of two factors, �kB(n)ikδ(n+1)k and da(n)i/dv(n)i
In the brain, those two factors would have to be represented by streams
of action potentials on at least two separate axons, so multiplying them
would mean multiplying variables coded in spike trains. There may be real
neurons that do this, but LIF neurons cannot; they can only apply synaptic
weights to incoming spikes and summate, as shown in equation 2.1. For
that reason we will focus on a simplified version of equation 2.6, which
avoids spike signal multiplication and which we call broadcast alignment.
In this scheme, the feedback signals are

δ(n)i = �kB(n)ikek. (2.7)

Here ek is the output error for neuron k in the final layer of the network.
So now every neuron in every layer receives the same feedback signals
ek, weighted by random, constant synapses B(n)ik. Broadcast alignment
needs fewer feedback neurons than backpropagation or feedback align-
ment: rather than propagating error signals through many layers, broadcast
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alignment uses just one layer of feedback cells, which code the errors ek and
project directly to the learning cells.

Each neuron receives its feedback δ as a stream of spikes, and from it
computes a single, scalar, intracellular teaching signal ι (iota) by weighting
δ by a factor proportional to the derivative da/dv of its activation function;
for cell i of layer n, we have

ι(n)i = η(n)(da(n)i/dv(n)i)δ(n)i. (2.8)

This signal then influences the change in each of the cell’s synaptic weights:

�W(n)i j = −ι(n)ia(n−1) j. (2.9)

We consider the biological implications of equations 2.8 and 2.9 in sections
2.6 and 4.

Feedback alignment and broadcast alignment differ in their handling
of the derivatives da/dv. Feedback alignment includes multilayer informa-
tion about da/dv in its feedback signals; for example, the formula for δ(n)i
in equation 2.6 contains the nth layer derivative term da(n)i/dv(n)i and also
includes δ(n+1)k, which in turn was computed using information about the
n + 1st layer derivatives da(n+1)k/dv(n+1)k, and so on through all the layers.
That is, in feedback alignment as in backpropagation, the feedback sig-
nals accumulate information about the derivatives da/dv of all downstream
neurons. Broadcast alignment, in contrast, omits da/dv from its feedback
signals δ(n)i in equation 2.7, but incorporates da(n)i/dv(n)i into its intracel-
lular learning mechanism in equation 2.8. Therefore, learning in any one
neuron is based solely on the derivative of its own activation function and
gets no information about any downstream da/dv. So broadcast alignment
delivers less information to each learning neuron than backpropagation or
feedback alignment does. In section 3 we show that it learns very effectively
nonetheless.

We also looked at whether this simplification could be pushed one step
further by omitting all information about da/dv from the learning algo-
rithm, that is, by combining derivative-free feedback, equation 2.7, with the
derivative-free intracellular process, equation 2.4. But we will show that
this derivative-free algorithm does not learn nearly as well as broadcast
alignment. That is, the minimal derivative information in equation 2.8 is
very useful for deep learning.

2.4 Dynamics and Activation. Broadcast alignment requires that learn-
ing neurons have information about the derivative da/dv of their activation
function. But LIF neurons have no such function. The leaky integrator in
equation 2.2 makes LIF cells dynamic: the values of h and therefore a depend
not only on the drive v at this moment but also on the values v has had over
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Figure 2: In a dynamic spiking neuron, activity a is not a function of drive v.
(A) For any drive v > 0, its activity a can be either 0 or 1. (B) The expected value
of a is a piecewise smooth function of v (blue curve), well approximated by
equation 2.10 (black curve). For further details see the main text and appendix A.

the last few milliseconds. Plotting a versus v, as in Figure 2A, illustrates the
problem. The blue dots show as for 500 random values of v: for any v > 0,
a can be either 0 or 1 depending on recent history, and the graph does not
resemble any smooth curve with a derivative da/dv.

But if we instead plot the average or expected value of a given v, which
we will write as E(a) (blue curve in Figure 2B), then the graph is smoother
(for a similar approach, see, e.g., O’Connor et al., 2013). The formula for
this E(a) curve is tref/(tref + τ log(v/(v − hth))) for v > hth (and E(a) = 0 for
v ≤ hth), where τ is the time constant of 0.02 s from equation 2.2 and tref is
the duration of the neuron’s refractory period, which in our case coincides
with the action potential duration of 1 ms (see Koch, 1999, and Eliasmith &
Anderson, 2002, for equivalent formulas). We will, however, approximate
the curve using a function of the form

E(a) ≈ max(0, c1 tanh(c2v)). (2.10)

The best-fitting function, plotted as a thin black curve in Figure 2B, has
coefficients c1 = 0.82 and c2 = 0.08, and does resemble the E(a) graph. We
chose tanh as the basis of our fitting function because it is a popular bounded
activation function in the machine learning literature. Other function forms
based on logarithms are also possible and actually yield slightly better fits to
E(a) because they saturate more slowly, but in our preliminary experiments,
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spiking networks based on these alternative functions learned no better or
worse than tanh-based ones. The question is whether equation 2.10 can play
the role of the activation function in deep learning, given that the standard
deviation of a about E(a) is so wide (light blue region in Figure 2B). We
address this question with simulations in section 3.

2.5 Error Feedback. All neurons in our networks, except first-layer neu-
rons, which simply carry input signals, learn by adjusting their weights
and biases based on feedback. Learning is driven by spiking error signals
ek, which are the differences between the desired outputs of the network
y∗

k and its actual outputs yk. For instance if a network has three layers, the
yk are the activities of the third-layer neurons, yk = a(3)k. Both yk and y∗

k
always consist of 0s and 1s (where, again, 1 means a spike and 0 means
no spike), and therefore the error signals ek = yk − y∗

k consist of 0s, 1s, and
−1s. Because real neurons cannot produce negative spikes, we propose two
populations of error feedback neurons, all of them carrying signals of 0 or 1,
but half of them being inhibitory cells, whose spikes signal negative errors.

This scheme does not imply the existence of any unphysiological “super-
visor” guiding the learning. For convenience, we speak of desired outputs
y∗

k , as in the machine learning literature, but the network need not receive
any y∗

k signals. All that matters is that it get signals representing the errors ek.
For instance learning circuits in the cerebellum adjust the processing in the
vestibulo-ocular reflex so that when the head moves, the eyes counterrotate
in the head at just the right velocity to keep the visual images stable on
the retinas. This learning is driven by error signals from the visual system,
which code retinal-image slip velocity; retinal-slip signals provide a use-
ful error vector, with no need for any signals coding desired eye velocities
(Lisberger, 1994). Another source of teacher signals that seems plausible
physiologically is the networks’ own inputs, as in the artificial networks
known as autoencoders, which learn useful representations of sense data
based on error signals that are differences between the networks’ own in-
puts and outputs (Bengio, 2009; Hinton, 2016).

2.6 Learning Mechanism. To implement equation 2.8 in LIF neurons,
we replace the activation function by the approximate E(a) function in
equation 2.10, and da/dv by the derivative of that function, which is 0
whenever the drive v ≤ 0 and is otherwise c1c2 sech2

(c2v), which means
that for v > 0,

ι(n)i = η(n) sech2(c2v(n)i)δ(n)i (2.11)

(the c1c2 term in the derivative is omitted because scaling is handled by η(n)).
As the notation η(n) suggests, all the neurons in any one layer n have the
same learning rate constant η(n). It is possible that real neurons may have
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individual, adaptive η’s as do the cells in many artificial nets, but we do not
explore that option here. Each layer’s η(n) is inversely proportional to the
number of inputs onto each of its neurons (e.g., for second-layer neurons
in MNIST trials, η(2) is 1/784). There are many possible ways of setting ηs,
but this method worked well in our simulations. The rationale for dividing
by the number of inputs (e.g., 784) is that it helps keep all neurons in the
network learning at about the same rate, whereas without the division, all
weights evolve at about the same rate.

For v > 0, the sech2 is a simple, indeed monotonic function that slopes
down from its peak at 0 like the right half of a gaussian. Hence, the sech2

term in equation 2.11 means that these neurons are more responsive to
error signals when they are less excited. Biologically, it implies that some
intracellular agent of synaptic change varies its activity as a function of the
cell’s overall drive. We know of no cell-biological evidence for or against
such a dependence, but it is not implausible, and it does greatly improve
learning, as we will show. For that reason, we use equation 2.11 in all our
spiking network simulations; that is, we propose that each learning neuron
computes its own ι based on its error feedback δ and its drive v.

It is convenient also to let ι drive adjustments in the neurons’ bias cur-
rents, as well as in their synapses:

�b(n)i = −ι(n)i. (2.12)

This feature makes the network a more flexible learner (though the same can
be achieved by weight adjustments alone if we add just one more neuron
to each nonoutput layer).

We can further improve learning by adding momentum (Sutskever,
2013), which means that the weight adjustment depends in part on how
the weight changed in the previous time step:

�W(n)i j = μ�W(n)i j − ι(n)ia(n−1) j, (2.13)

where μ is a number between 0 and 1. In the simulations presented in this
letter, we set μ = 0.9, as this is a common value in the machine learning
literature, though we have observed that the exact value is not critical, and
spiking networks without momentum also learn well (see section 4). Biolog-
ically, momentum means that the processes underlying synaptic plasticity
persist for a few milliseconds after the error signals that trigger them. Mo-
mentum can be applied in an analogous way to �b.

Our proposed learning mechanism, equations 2.7 to 2.9 and 2.12, is sum-
marized in pseudocode form in Table 1.

2.7 Simulations. In all simulations, we computed dynamics by Euler
integration with a time step �t of 0.25 ms. Network Ws and bs were ini-
tialized so that the vs of all neurons in all layers had a mean of 8 and a
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Table 1: Pseudocode for Broadcast Alignment in an LIF Network.

time step �t ← 0.25 ms, time constant τ ← 20 ms,
threshold hth ← 0.4, activation-function fitting constant c2 ← 0.08

initialize forward weights W
(n)i j , biases b

(n)i, feedback weights B
(n)ik,

drives v
(n)i, hillock potentials h

(n)i, activities a
(n)i,

times since refractory periods began ref
(n)i,

and learning rate constants η
(n)

for each example
sample inputs a

(1)i and desired outputs y∗
k

for time t = 0 . . . 100 ms step �t

for each layer n in the network
for each cell i in the layer
v

(n)i ← � jW(n)i ja(n−1) j + b
(n)i // drive

if ref
(n)i > 0, ref

(n)i ← ref
(n)i + �t // how long has the cell been refractory?

if ref
(n)i > 1 ms, ref

(n)i ← 0 // end refractory period
if ref

(n)i > 0, h
(n)i ← 0 else h

(n)i ← h
(n)i + (v

(n)i − h
(n)i)�t/τ // hillock potential

if h
(n)i > hth, ref

(n)i ← ε (any tiny positive number) // start a refractory period
if ref

(n)i > 0, a
(n)i ← 1 else a

(n)i ← 0 // activity
end for

end for

if t > 20 ms
ek ← a

(n layers)k − y∗
k // error

for each layer n from output back to layer 2
for each cell i in the layer
δ
(n)i ← �kB

(n)ikek // feedback
if v

(n)i > 0, da
(n)i/dv

(n)i ← sech2
(c2v(n)i) else da

(n)i/dv
(n)i ← 0

ι
(n)i ← η

(n)
δ
(n)ida

(n)i/dv
(n)i // intracellular teaching signal

W
(n)i j ← W

(n)i j − ι
(n)ia(n−1) j // weights

b
(n)i ← b

(n)i − ι
(n)i // bias

end for
end for

end if
end for

end for

standard deviation of 10, because with these values, the neurons’ activity is
spread out over the middles of their operating ranges, as shown in section
3 in Figure 2B (see appendix B for details of this initialization).

During training, we used minibatches of 100 examples. It seems unlikely
that the brain uses minibatches, but using them in our experiments reduced
the computer run times and did not alter anything essential in the proposed
learning model.

As in other learning studies with dynamic neurons, each input was
presented for a brief interval of simulated time (100 ms in our case) rather
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than for a single time step, as is done with static, graded neurons. And the
network did not adjust its Ws or bs until it had been viewing an image for
20 ms. Similarly during testing, we ignored the network’s outputs for the
first 20 ms; we averaged its output activity vector over the remaining 80 ms
and took that average as the network’s answer. One motivation for these
numbers is that humans need about 100 ms of viewing time to recognize
objects in pictures.

In MNIST trials, performance was assessed in the usual way: the net-
work was regarded as giving the correct answer when the appropriate
output neuron was more active than all the others. For instance, when the
handwritten digit is a 3, then the fourth of the 10 output neurons should
be spiking and the other 9 should all be silent, so the output was consid-
ered correct when the fourth neuron produced more spikes than any of the
others during the 80 ms answering period.

3 Results

3.1 Performance in Nonspiking Networks. First we tested our can-
didate deep learning algorithm, broadcast alignment, against three other
methods: derivative-free learning, feedback alignment and backpropaga-
tion. These last two algorithms cannot run on LIF neurons, and therefore
the tests of all four were run on networks of nonspiking neurons. Although
the neurons were nonspiking, their activation function equaled the approx-
imate activation function of LIF neurons, given in equation 2.10, for better
comparison with the spiking neuron results in section 3.2.

In all these tests, the learning network had the same deep and narrow
structure, with 2 input neurons, 2 output neurons, and 8 hidden layers of 10
neurons each. The task of the learning network was to match the outputs of
a nonspiking teacher, or target, network. The target network was also deep
and narrow, again with 10 layers and 2 input and 2 output neurons, to create
tasks where deep learning was likely to be useful. To make the tasks more
challenging, the target net had different types of neurons than the learner
in all layers but the first: the 8 hidden layers each consisted of 2 nonrectified
tanh cells, and the output layer had two nontanh, one-hot output cells; that
is, the only possible outputs were (1, 0) and (0, 1). The probabilities of these
two outputs were always close to equal, that is, always within 0.001 of 0.5.

Each algorithm was tested 500 times, each time with new, random
weights in the target network and new, random initializations of the learn-
ing network, to present the learners with a large and varied set of tasks.

We ran these 500 tests on each of nine versions of each algorithm, which
differed in their depth of learning. For instance, all tests of backpropagation
ran on the 10-layer learning nets described above, but in the depth-1 version,
learning was restricted to the synapses in the tenth (i.e., the output) layer
of the net, and all upstream synapses stayed fixed at their initial values. In
the depth-2 version, synapses in the last two layers were adjusted, and so
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Figure 3: Comparing algorithms’ depth of learning in nonspiking networks. In
each panel, 10-layer nets learn to mimic other 10-layer nets. The uppermost,
bright green curve shows depth-1 learning, where only output-layer synapses
adapt. The lowermost, blue curve (labeled “9” on the right) shows depth-9
learning, where all 9 layers of synapses adapt. Other curves show intermediate
depths. (A) With the backpropagation algorithm, the depth-9 curve lies well
below all the others, showing that useful teaching signals reached even the
deepest synapses. (B) The same holds for feedback alignment and (C) broadcast
alignment (D) but not for derivative-free learning, where depth-9 was no better
than depth-1.

on down to depth-9, the deepest possible version where all the synapses in
the network were adjusted. The point of these comparisons was to see how
far upstream each algorithm was able to deliver useful teaching signals.

Figure 3A shows the results for backpropagation. Each of the nine curves
shows the performance error, averaged over 500 tests, for one of the depth
versions of the algorithm: the top-most, bright green curve for the shal-
lowest, or depth-1 version; the bottom blue curve for the deepest, depth-9,
version; and the curves in between for the seven intermediate depths. Each
curve is centered on the mean of its 500 trials, and its thickness equals 2
standard errors of the mean. Trial-to-trial variance was large because each
trial used a different target function, but after 500 trials, the standard errors
were small enough that the nine bands are distinctly separate. In particular,
the lowest of the nine learning curves lies well below the second-lowest,
showing that depth-9 learning was better than depth-8. This finding means
that backpropagation delivered useful teaching signals all the way to the
deepest layer of synapses in the network.

Figure 3B shows that for feedback alignment also, depth-9 learning
was clearly better than depth-8. Figure 3C shows the same for broadcast
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alignment. That is, these two algorithms also delivered useful teaching sig-
nals to the deepest parts of the net. Their error rates, though, were slightly
higher than those of backpropagation: in this class of tasks, backpropaga-
tion was slightly better than feedback alignment, which in turn was slightly
better than broadcast alignment.

Figure 3D shows that with the derivative-free algorithm, depth-9 learn-
ing was no better than depth-1 on average by the ends of the trials (curves
for only those two depths are shown, to reduce clutter). The deeper version
was faster and so gave better results early in the trials (near the left sides of
the graphs). But neither worked as well as the deeper versions of the other
three algorithms.

In summary, of the two candidate deep-learning algorithms compatible
with LIF neurons, broadcast alignment and derivative-free learning, the
former worked much better than the latter. Therefore, we chose broadcast
alignment for implementation in spiking nets.

3.2 Broadcast Alignment in Spiking Networks. We tested an LIF ver-
sion of broadcast alignment on the same task as in section 3.1 The target
network was identical to that in section 3.1. The learning net had the same
structure as in section 3.1 except that it contained only spiking neurons af-
ter the input layer. That is, in the learning network, the two neurons of the
first layer represented sensory receptors and so had graded activity—their
activities a(1)k were real numbers, not necessarily 0s or 1s. All other neurons
in the learning network were of the LIF type—all neurons in forward layers
2 through 10 and all the feedback neurons. We ran 100 trials, with a different
target function in each trial.

Figure 4 shows that this LIF version learned about as well as the non-
spiking version of broadcast alignment in Figure 3C, in particular, that it
also delivered useful teaching signals all the way to the deepest parts of the
network.

3.3 High Dimensions. To show that the same principles still hold in
higher-dimensional problems, we trained networks to recognize the hand-
written digits in the MNIST database (LeCun, Bottou, Bengio, & Haffner,
1998). Again we started with nonspiking networks so we could compare
all four algorithms: backpropagation, feedback alignment, broadcast align-
ment, and derivative-free learning. We considered two networks. One had
three layers (including the input layer), with 784 input neurons represent-
ing the input image (i.e., the grayscale values of a 28-by-28 array of pixels),
then 1000 neurons in the second layer, and 10 in the output layer. The other
network had four layers (including input), with 784, 630, 370, and 10 neu-
rons. We ran three trials of each algorithm in each architecture, and again
we tested different depths of learning.

Table 2 summarizes the results. In the three-layer network with depth-2
learning (i.e., adjusting both layers of synapses), backpropagation correctly
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Figure 4: Spiking networks are capable of deep learning by broadcast align-
ment. Tasks and plotting are as in Figure 3. The bottom curve, representing
depth-9 learning, lies well below the other curves, which means that useful
teaching signals reached the deepest synapses in the net.

Table 2: Mean MNIST Scores of Nonspiking and Spiking (LIF) Networks.

Algorithm Network Depth Learning Depth Score

BP, FA, BA 3 1 95.98
DF 3 1 95.29
BP 3 2 98.56
FA 3 2 98.42
BA 3 2 97.67
DF 3 2 96.12
BP 4 3 98.60
FA 4 3 98.22
BA 4 3 97.64
DF 4 3 95.62
LIF-BA 3 1 90.49
LIF-BA 3 2 96.02
LIF-BA 4 3 97.05

Notes: BP: backpropagation; FA: feedback alignment; BA: broadcast
alignment; DF: derivative-free learning. The first 10 rows show results
of nonspiking networks; the last 3, LIF networks.

classified 98.56% (mean over the three trials) of the 10,000 images in the test
set; feedback alignment managed 98.42%; broadcast alignment 97.67%; and
derivative-free learning 96.12%. In the same three-layer network but with
depth-1 (i.e., shallow) learning, backpropagation, feedback alignment, and
broadcast alignment all managed 95.98% (because these three algorithms
are identical in this setting), and derivative-free learning 95.29%. So the
key finding was that derivative-free learning was again scarcely better than
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Figure 5: Deep spiking networks learn to read MNIST handwritten digits. Four-
layer networks (uppermost curves, in black) outperform 3-layer ones (blue),
which outperform 3-layer ones where only the output layer learns (green).
Horizontal bars at the right show final scores on the full 10,000-element test set.

shallow learning, whereas broadcast alignment was again able to deliver
useful teaching signals to upstream synapses.

None of the algorithms did appreciably better in the four-layer network.
Backpropagation managed 98.60%, feedback alignment 98.22%, broadcast
alignment 97.64%, and derivative-free 95.62. Most likely backpropagation
was at the limit of what can be achieved without some form of regulariza-
tion, such as convolution, dropout, or data augmentation. The others might
have done better with devices such as cross-entropy loss and annealing, but
we avoided those methods because they would have been complicated or
controversial to include in the LIF network.

Turning now to the LIF networks, the three-layer net running broadcast
alignment managed an average score of 96.02%, as shown by the blue
curves in Figure 5. Specifically, these three curves depict three runs. In each
run, the network learned from the 60,000 images in the MNIST training
set. After every 1000 training examples, the network was tested on 100 test
examples—100 images randomly drawn from a test set of 10,000 images
that were never used for training, only for assessment. These test scores
are plotted in the graph to show the network’s improvement. After 1.8
million training examples (30 passes through the training set), we tested
the network on all 10,000 images in the test set and plotted its score as a
horizontal line at the right side of the plot, though the three lines, for the
three runs, are too close together to distinguish in the graph: they range
from 95.97% to 96.11%.

With depth-1 learning (i.e., when synaptic adjustment was restricted to
the third layer of the network), performance was not as good. The three
runs (green curves in Figure 5) achieved final scores ranging from 90.26%
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to 90.82%, mean 90.49%. So the 96% achieved in the earlier tests (the blue
curves) depended on synaptic adjustments in the upstream, second layer.

We also tested the four-layer network of 784, 630, 370, and 10 neurons.
It had the same total number of neurons as the three-layer network, but
fewer synaptic weights and far fewer cells and synapses in the shallower
parts—the last and second-last layers. Nevertheless, it outperformed the
three-layer version, achieving scores in the range 96.99% to 97.09% in its
three runs (black curves in Figure 5), for a mean of 97.05%.

4 Discussion

We have shown that dynamic spiking networks can learn by applying a
variant of the feedback alignment algorithm and replacing its factor da/dv

with the derivative of E(a). Deeper networks learn better than shallower
ones, showing that with this method, useful teaching signals reach upstream
layers.

Using the algorithm described in equations 2.7 to 2.9, 2.12, and 2.13,
our four-layer networks scored 97% on MNIST, which so far as we know,
is the best score yet achieved by learning by any all-spiking network. In
what follows, we relate our results to other recent discoveries involving
spiking networks. In cases where these other studies also used the MNIST
task, we will report their scores on it. But we emphasize that these different
studies often had widely different aims and that most of them, like our own,
were not concerned with setting records on MNIST but with demonstrating
computational principles.

Several labs have looked into creating useful spiking networks not by
training them directly but by training nonspiking networks and then trans-
lating the results into spiking nets. By this method, Diehl et al. (2015) created
spiking networks that achieved 98.68% on MNIST and convolutional spik-
ing nets that managed 99.12%. By similar methods, Eliasmith et al. (2012)
and O’Connor et al. (2013) both constructed spiking networks that achieved
94%, and Neil and Liu (2014) managed 92%.

Other labs have devised spiking networks that do learn with one layer of
plastic synapses. Beyeler et al. (2013) developed a network of 71,026 neurons
that learned to score 92% on MNIST. Diehl and Cook (2015) achieved 91.9%
with 2384 neurons and 95.0% with 7184. Jimenez Rezende and Gerstner
(2014) trained networks to reproduce temporal patterns of spikes. Neftci
et al. (2014) achieved 91.9% on MNIST with a restricted Boltzmann machine
of 1324 stochastic spiking neurons. Brader et al. (2007) achieved 96.5% with
just 934 neurons.

Few labs have considered deep learning in spiking networks. Bohte et al.
(2002) developed the SpikeProp algorithm and used it to train three-layer
networks on several tasks. But SpikeProp is not fully spiking: its forward
layers spike, but its feedback signals are real valued. It also requires weight
transport, as backpropagation does. In contrast, Henderson et al. (2015)
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used fixed feedback weights and only spiking neurons in both the forward
and feedback paths, and scored 87.4% on a subset of MNIST with a four-
layer network of 4058 cells.

In many of these other cited studies, as in our own, the MNIST scores
were achieved without the benefit of several devices used in the best-
performing nonspiking networks: no cross-entropy, no weight decay, no
adaptive gradients, no dropout (Srivastava et al., 2014), no validation set
to monitor for overfitting, no data augmentation (Ciresan et al., 2010), no
annealing or variation of momentum (Sutskever, 2013), and no convolution
(Fukushima, 1979, 2013; Krizhevsky et al., 2012; LeCun et al., 1998; Ser-
manet et al., 2013). And the networks learned for only a few epochs rather
than thousands. So there is scope for improvement.

Our results on deep learning are biologically interesting because it seems
likely that at least some of the brain’s learning circuits are multilayered. In
the best-studied learning circuit in motor physiology, the cerebellum, most
research has focused on a single layer of synapses—those between the
parallel fibers and Purkinje cells (Sakurai, 1987)—but other synapses, from
mossy fibers onto cerebellar granule cells are also plastic (D’Angelo & De
Zeeuw, 2008). Therefore, this system appears to have at least two layers and
may form part of a deeper circuit including deep cerebellar or brainstem
nuclei (Lisberger, 1994; Medina & Mauk, 2000).

Theoretically, deep learning has advantages and disadvantages. Its main
drawback is its complexity. In networks with one-layer learning, such as
support vector machines, gaussian processes, and other kernel methods
(Liu, Prı́ncipe, & Haykin, 2010), there is a simple, usually linear relation
between the network’s output errors ek and all its adjustable weights. As
a result the risk surface (e.g., the graph of squared error as a function of
the weights) is convex, sloping down smoothly in all dimensions toward
a single optimum. In networks where two or more layers learn, there is
nonlinear processing between e and some of the weights. This nonlinearity
complicates the risk surface and also means that information about the form
of the nonlinearity must be delivered to upstream synapses, as in equations
2.8 and 2.11.

On the positive side, deep learning makes networks more flexible by
reducing nonoptimized parameters. That is, a network with just one layer
of learning almost always needs at least one additional processing layer up-
stream for expansion recoding (Liu et al., 2010). If that upstream layer cannot
learn, then its synapses stay frozen forever at suboptimal values (or decay
or otherwise change through some process other than learning). It is true
that kernel algorithms have clever ways to initialize frozen synapses, and
natural selection may have done this for our brains, but even so, a network
with all its synapses unfrozen will be more adaptable.

Another advantage is thought to be that deep networks contain a kind
of hierarchy of layers that reflects the hierarchies in many stimuli (Saxe,
McClelland, & Ganguli, 2013; for example, many images show objects made
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of parts that are made of smaller parts (Yamins et al., 2014). In other words
deep networks perform a useful kind of regularization (Bengio & LeCun,
2007; Ba & Caruana, 2014).

Our findings show that multilayer networks of dynamic spiking neurons
can learn by mechanisms similar to the backpropagation algorithm that
is used with the static, nonspiking artificial neurons of the deep-learning
literature. But the feedback calculations in our method, in equations 2.7 and
2.8, are simpler than those in backpropagation.

In all the simulations in Figures 3, 4, and 5, we used a momentum value
of 0.9. We chose that value because it is common in machine learning;
at present, we have no biological justification for it except that it works.
But it may be that the precise value of momentum is not critical. With
broadcast alignment, we have observed that even momentum-free four-
layer networks sized like those in Figure 5 can still achieve 97% on MNIST
(results not shown).

In equation 2.8, we assumed that the learning mechanism within each
neuron has information about the derivative da/dv of its own activation
function. We tried removing that assumption, with our derivative-free al-
gorithm, but learning suffered badly. Hence, it appears that deep learning
in a spiking network is more effective if each neuron’s learning reflects its
own nonlinearity in this sense (i.e., if neurons respond more strongly to
error signals when their drive is weaker). We suggest that real neurons may
show a similar dependence, on the grounds that it would be very useful for
deep learning

This letter has addressed three computational issues but deferred many
other questions as topics for future study. For instance, we have treated
synapses as simple, scalar weights that multiply their incoming signals,
whereas real synapses are more complex. We have also ignored issues of
timing: like most other neural network simulations, ours send their feed-
back signals to all learning cells simultaneously and without delay, and all
their variables are updated abruptly and then stay constant for the duration
of one time step. Further, we have described no biochemical implementa-
tions for the computations in our model, including those of momentum and
the intracellular teaching signal ι in equation 2.8. Also in equation 2.8, it
remains to be seen how precisely the variable da/dv must be represented.
We have shown that if it is omitted entirely (i.e., assumed to be 1), as in
our derivative-free algorithm, then learning is poor. But if a cell’s estimate
of da/dv were only slightly inaccurate, then the consequences might be
less extreme. Even an inexact estimate might make a network learn bet-
ter than it would with the derivative-free algorithm. There are also open
questions about the variables that might feed into the calculation of da/dv

in equation 2.8. In equation 2.11, we based the computation of da/dv on
the drive variable; that is, we proposed that the cell estimates its da/dv

based on some intracellular correlate of v. But da/dv might instead be esti-
mated based on h, perhaps directly or perhaps by first filtering h to yield an
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estimate of v, and there are other ways neurons might estimate da/dv (Hin-
ton, 2016).

Appendix A: Plotting a and v

To compute the data in Figure 2A we presented a series of 1000 drives v, all
between −50 and 50, to a single LIF neuron, with each v applied for 0.1 s.
We ignored the neuron’s activity, a, over the first 0.02 s, because the neuron
was dynamic and its activity was settling over that time. Then we recorded
320 vs and as over the remaining 0.08 s. In all, then, we recorded 320,000
input-output pairs (v, a)—320 for each of the 1000 vs. The 500 blue dots in
Figure 2A are a random subset of those pairs.

Appendix B: Initialization

We initialized the network weights and biases using techniques closely
analogous to those used in computer science. The mechanisms used in the
brain are likely quite different and outside the scope of this letter. Our
methods were simply a fast way to get weights and biases that prevented
the forward and feedback signals from vanishing or saturating.

Network Ws and bs were initialized so that the vs of all neurons, at the
start of training, had means and ranges appropriate for LIF neurons—not
too large and not too small—so they rarely fell in the ranges where the
neuron’s activity was 0 or near maximal. Simpler initializations than this
one also worked well in preliminary tests, but this approach has a clear
rationale. Specifically, we initialized all biases b to a physiological value of
b̄ = 0.8 (Eliasmith & Anderson, 2002). We then defined a desired mean for
v, namely, v̄ = 8, and a desired standard deviation σv = 10, chosen to keep
the neurons’ drives in the range where the E(a) curve in Figure 2A is not
flat. From these values, we computed the desired second moment ¯̄v. We
also defined a linear approximation to the LIF activation function, equation
2.10,

a = αv, (A.1)

where α = c1c2, the product of the fitted constants c1 and c2 in equation
2.10, which gave us α = 0.066. Then for each layer n after the first, we
computed its fan-in N—the number of inputs to each neuron—and from
that the desired mean of the weights

W̄(n) = (v̄ − b̄)/(αN v̄), (A.2)

and the desired second moment,
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¯̄W (n) = ( ¯̄v + α2(N − N2)W̄2
(n)v̄

2 − 2αNb̄v̄W̄(n) − b̄2)/(α2N ¯̄v) (A.3)

From W̄(n) and ¯̄W (n) we computed the standard deviation σW(n) and initial-
ized the weights to

W(n)i j = W̄(n) + 2
√

3σW(n)(rand − 0.5), (A.4)

where rand had a uniform distribution over the range [0, 1]. Given these
values for W(n)i j and assuming the vs in layer n − 1 have the desired mean
v̄ and standard deviation σv , it follows that the vs in layer n will have those
same statistics. That is, this initialization ensures that at least at the start of
the run, the drives in all layers have reasonable values—neither too small
nor too large on average, and varying over a reasonable range when the
network inputs vary.

Our values for v̄ and σv imply that E(a) will have a mean of 0.64 and
a standard deviation of 0.8. Therefore, we ensured that network inputs
had these statistics; for example, in MNIST trials, the input vectors were
preprocessed so all 784 pixels had the same mean value of 0.64, across all
the training images.

For alignment algorithms, we have to initialize not just the forward
weights and biases but the feedback weights as well. For feedback alignment
in its original form, those feedback weights, which we will call BFA here,
were initialized like the Ws in equation A.4,

BFA(n)i j = W̄(n+1) + 2
√

3σW(n+1)(rand − 0.5), (A.5)

though of courseWs and BFAs were initialized independently (the indices on
the right-hand side are (n + 1) because B(n)ik plays the same role in equation
2.6 as W(n+1)ki does in equation 2.5). This formula ensured that the feedback
signals were scaled as they would have been with backpropagation; they
were about the same size on average.

For broadcast alignment, we first computed the BFAs using equation A.5
and then set each layer’s feedback matrix BBA(n) equal to BFA(n) times all the
downstream BFAs,

BBA(n) = γ D�n+D
i=n BFA(i), (A.6)

where γ is a scalar constant to be explained below and D is the number of
downstream layers; e.g., if n = 4 and there are seven layers in the net then
D = 3. The rationale here is that BBA(n) plays the same role in broadcast
alignment as does the whole sequence of downstream BFAs in feedback
alignment. That is, in feedback alignment the output-layer error signals
pass back through this whole series of BFAs to create the teaching signals
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for layer n, whereas in broadcast alignment BBA(n) alone conveys the output
error to layer n, as shown in equation 2.7. Therefore equation A.6 ensured
that each BBA(n) had the right numbers of rows and columns; for example,
if the output layer of a network had 10 neurons and layer 2 had 1000, then
BBA(2) had 1000 rows and 10 columns. The scheme also scaled the feedback
weights in a useful way, so they kept the feedback signals about the same
size as those of the backpropagation and feedback alignment methods if the
constant γ was chosen appropriately. This γ compensated for the fact that
feedback alignment multiplies its feedback signals δ(n)i by da/dv in every
layer, as shown in equation 2.6, whereas broadcast alignment does not, as
shown in equation 2.7. For example if da/dv were, on average, equal to 0.1
in every layer, then after, say, four layers of feedback, the multiplications by
da/dv would shrink the feedback signals by about 0.14 = 10−4 in a feedback
alignment network. To keep the feedback in broadcast alignment at about
the same scale, one can set γ = 0.1 in equation A.6. So for the MNIST trials
in section 3.3, we estimated the mean da/dv, which was about 0.034, and
used that value for γ . A simpler approach is to set γ equal to the constant
α from the linear approximation to a neuron in equation A.1. This method
will usually yield a larger than optimal γ because the neurons are in fact
sublinear, but it works well nonetheless and does not require an estimate
of da/dv. This simpler approach is what we used in sections 3.1 and 3.2.
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